In [8]:
import pandas as pd
import numpy as np
from collections import Counter
from matplotlib import pyplot as plt
import os
import cv2
%matplotlib inline
In [9]:
%%javascript
IPython.OutputArea.auto_scroll_threshold = 9999;
In [10]:
def load_filepaths():
    imdir_ideology = 'ideology_image_dataset/'
    ideology_files=os.listdir('ideology_image_dataset/')
    ideology_files_path=[os.path.join(imdir_ideology,file) for file in ideology_files ]
    
    return ideology_files_path
In [11]:
ideology_files_path=load_filepaths()
len(ideology_files_path)
Out[11]:
2942
In [23]:
def showClustering(predicted_labels,label):
    label_indexs= np.where(predicted_labels==label)[0]
    print("CLUSTER--> ",label,"TOTAL IMAGES--> ",len(label_indexs))
    if(len(label_indexs)>=2000):
        print("Cannot be visualize")
    
    else:
        if(len(label_indexs)>=500):
            fig=plt.figure(figsize=(10, 400))


        elif(len(label_indexs)>100 and len(label_indexs)<500):
            fig=plt.figure(figsize=(10, 70))
        elif(len(label_indexs)>=50 and len(label_indexs)<100):
            fig=plt.figure(figsize=(10, 30))

        elif(len(label_indexs)>=20 and len(label_indexs)<50):
            fig=plt.figure(figsize=(10, 20))

        elif(len(label_indexs)>=0 and len(label_indexs)<20):
            fig=plt.figure(figsize=(10, 8))

        for i,index in enumerate(label_indexs):


            image = cv2.imread(ideology_files_path[index])
            image= cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

            columns = 4
            rows = np.ceil(len(label_indexs)/float(columns))

            fig.add_subplot(rows,columns, i+1)
            plt.imshow(image)


        plt.show()

    

VGG-16

Here we can visualize the results of optics, mean shift and agglomerative clustering . Also we will not visualize the cluster that will more than 2000 images

In [13]:
results_df=pd.read_csv('image-results2/ideology_model_vgg_16.npy.csv')
results_df
Out[13]:
Unnamed: 0 n_clusters silhouette calinski davies
0 Agglomerative clustering 2 0.052873 242.662997 2.846778
1 DBSCAN 0 -1.000000 -1.000000 -1.000000
2 Mean-shift 51 0.099957 4.555625 0.917647
3 Optics 51 -0.195670 6.969148 1.454804
4 Agglomerative clustering-scipy 30 0.109012 6.717517 0.991022
5 HDBSCAN 2 0.117461 67.867594 3.463518
In [24]:
predicted_Labels=np.load('image-results2/ideology_model_vgg_16.npy_mean_shift_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  0 TOTAL IMAGES-->  2849
Cannot be visualize
CLUSTER-->  1 TOTAL IMAGES-->  2
CLUSTER-->  2 TOTAL IMAGES-->  2
CLUSTER-->  3 TOTAL IMAGES-->  2
CLUSTER-->  4 TOTAL IMAGES-->  3
CLUSTER-->  5 TOTAL IMAGES-->  5
CLUSTER-->  6 TOTAL IMAGES-->  2
CLUSTER-->  7 TOTAL IMAGES-->  2
CLUSTER-->  8 TOTAL IMAGES-->  1
CLUSTER-->  9 TOTAL IMAGES-->  1
CLUSTER-->  10 TOTAL IMAGES-->  2
CLUSTER-->  11 TOTAL IMAGES-->  1
CLUSTER-->  12 TOTAL IMAGES-->  3
CLUSTER-->  13 TOTAL IMAGES-->  2
CLUSTER-->  14 TOTAL IMAGES-->  1
CLUSTER-->  15 TOTAL IMAGES-->  1
CLUSTER-->  16 TOTAL IMAGES-->  1
CLUSTER-->  17 TOTAL IMAGES-->  2
CLUSTER-->  18 TOTAL IMAGES-->  1
CLUSTER-->  19 TOTAL IMAGES-->  1
CLUSTER-->  20 TOTAL IMAGES-->  1
CLUSTER-->  21 TOTAL IMAGES-->  1
CLUSTER-->  22 TOTAL IMAGES-->  1
CLUSTER-->  23 TOTAL IMAGES-->  1
CLUSTER-->  24 TOTAL IMAGES-->  9
CLUSTER-->  25 TOTAL IMAGES-->  2
CLUSTER-->  26 TOTAL IMAGES-->  2
CLUSTER-->  27 TOTAL IMAGES-->  6
CLUSTER-->  28 TOTAL IMAGES-->  1
CLUSTER-->  29 TOTAL IMAGES-->  1
CLUSTER-->  30 TOTAL IMAGES-->  1
CLUSTER-->  31 TOTAL IMAGES-->  1
CLUSTER-->  32 TOTAL IMAGES-->  1
CLUSTER-->  33 TOTAL IMAGES-->  2
CLUSTER-->  34 TOTAL IMAGES-->  1
CLUSTER-->  35 TOTAL IMAGES-->  2
CLUSTER-->  36 TOTAL IMAGES-->  2
CLUSTER-->  37 TOTAL IMAGES-->  1
CLUSTER-->  38 TOTAL IMAGES-->  1
CLUSTER-->  39 TOTAL IMAGES-->  1
CLUSTER-->  40 TOTAL IMAGES-->  1
CLUSTER-->  41 TOTAL IMAGES-->  3
CLUSTER-->  42 TOTAL IMAGES-->  1
CLUSTER-->  43 TOTAL IMAGES-->  1
CLUSTER-->  44 TOTAL IMAGES-->  1
CLUSTER-->  45 TOTAL IMAGES-->  4
CLUSTER-->  46 TOTAL IMAGES-->  1
CLUSTER-->  47 TOTAL IMAGES-->  1
CLUSTER-->  48 TOTAL IMAGES-->  3
CLUSTER-->  49 TOTAL IMAGES-->  1
CLUSTER-->  50 TOTAL IMAGES-->  3
In [25]:
predicted_Labels=np.load('image-results2/ideology_model_vgg_16.npy_optics_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  0 TOTAL IMAGES-->  5
CLUSTER-->  1 TOTAL IMAGES-->  6
CLUSTER-->  2 TOTAL IMAGES-->  8
CLUSTER-->  3 TOTAL IMAGES-->  8
CLUSTER-->  4 TOTAL IMAGES-->  7
CLUSTER-->  5 TOTAL IMAGES-->  5
CLUSTER-->  6 TOTAL IMAGES-->  7
CLUSTER-->  7 TOTAL IMAGES-->  5
CLUSTER-->  8 TOTAL IMAGES-->  7
CLUSTER-->  9 TOTAL IMAGES-->  11
CLUSTER-->  10 TOTAL IMAGES-->  5
CLUSTER-->  11 TOTAL IMAGES-->  15
CLUSTER-->  12 TOTAL IMAGES-->  15
CLUSTER-->  13 TOTAL IMAGES-->  6
CLUSTER-->  14 TOTAL IMAGES-->  6
CLUSTER-->  15 TOTAL IMAGES-->  5
CLUSTER-->  16 TOTAL IMAGES-->  8
CLUSTER-->  17 TOTAL IMAGES-->  6
CLUSTER-->  18 TOTAL IMAGES-->  5
CLUSTER-->  19 TOTAL IMAGES-->  5
CLUSTER-->  20 TOTAL IMAGES-->  6
CLUSTER-->  21 TOTAL IMAGES-->  8
CLUSTER-->  22 TOTAL IMAGES-->  5
CLUSTER-->  23 TOTAL IMAGES-->  5
CLUSTER-->  24 TOTAL IMAGES-->  12
CLUSTER-->  25 TOTAL IMAGES-->  5
CLUSTER-->  26 TOTAL IMAGES-->  5
CLUSTER-->  27 TOTAL IMAGES-->  12
CLUSTER-->  28 TOTAL IMAGES-->  11
CLUSTER-->  29 TOTAL IMAGES-->  9
CLUSTER-->  30 TOTAL IMAGES-->  5
CLUSTER-->  31 TOTAL IMAGES-->  5
CLUSTER-->  32 TOTAL IMAGES-->  6
CLUSTER-->  33 TOTAL IMAGES-->  7
CLUSTER-->  34 TOTAL IMAGES-->  8
CLUSTER-->  35 TOTAL IMAGES-->  12
CLUSTER-->  36 TOTAL IMAGES-->  6
CLUSTER-->  37 TOTAL IMAGES-->  15
CLUSTER-->  38 TOTAL IMAGES-->  6
CLUSTER-->  39 TOTAL IMAGES-->  6
CLUSTER-->  40 TOTAL IMAGES-->  6
CLUSTER-->  41 TOTAL IMAGES-->  6
CLUSTER-->  42 TOTAL IMAGES-->  5
CLUSTER-->  43 TOTAL IMAGES-->  6
CLUSTER-->  44 TOTAL IMAGES-->  5
CLUSTER-->  45 TOTAL IMAGES-->  11
CLUSTER-->  46 TOTAL IMAGES-->  5
CLUSTER-->  47 TOTAL IMAGES-->  5
CLUSTER-->  48 TOTAL IMAGES-->  8
CLUSTER-->  49 TOTAL IMAGES-->  6
CLUSTER-->  50 TOTAL IMAGES-->  5
In [26]:
predicted_Labels=np.load('image-results2/ideology_model_vgg_16.npy_agg-scipy_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  1 TOTAL IMAGES-->  1
CLUSTER-->  2 TOTAL IMAGES-->  1
CLUSTER-->  3 TOTAL IMAGES-->  1
CLUSTER-->  4 TOTAL IMAGES-->  3
CLUSTER-->  5 TOTAL IMAGES-->  1
CLUSTER-->  6 TOTAL IMAGES-->  1
CLUSTER-->  7 TOTAL IMAGES-->  2
CLUSTER-->  8 TOTAL IMAGES-->  2
CLUSTER-->  9 TOTAL IMAGES-->  1
CLUSTER-->  10 TOTAL IMAGES-->  1
CLUSTER-->  11 TOTAL IMAGES-->  1
CLUSTER-->  12 TOTAL IMAGES-->  13
CLUSTER-->  13 TOTAL IMAGES-->  2
CLUSTER-->  14 TOTAL IMAGES-->  2
CLUSTER-->  15 TOTAL IMAGES-->  3
CLUSTER-->  16 TOTAL IMAGES-->  18
CLUSTER-->  17 TOTAL IMAGES-->  1
CLUSTER-->  18 TOTAL IMAGES-->  1
CLUSTER-->  19 TOTAL IMAGES-->  11
CLUSTER-->  20 TOTAL IMAGES-->  26
CLUSTER-->  21 TOTAL IMAGES-->  7
CLUSTER-->  22 TOTAL IMAGES-->  2835
Cannot be visualize
CLUSTER-->  23 TOTAL IMAGES-->  1
CLUSTER-->  24 TOTAL IMAGES-->  1
CLUSTER-->  25 TOTAL IMAGES-->  1
CLUSTER-->  26 TOTAL IMAGES-->  1
CLUSTER-->  27 TOTAL IMAGES-->  1
CLUSTER-->  28 TOTAL IMAGES-->  1
CLUSTER-->  29 TOTAL IMAGES-->  1
CLUSTER-->  30 TOTAL IMAGES-->  1

VGG-19

We can viualize the mean shift and the optics here

In [27]:
results_df=pd.read_csv('image-results2/ideology_model_vgg_19.npy.csv')
results_df
Out[27]:
Unnamed: 0 n_clusters silhouette calinski davies
0 Agglomerative clustering 2 0.103830 400.562021 2.244039
1 DBSCAN 0 -1.000000 -1.000000 -1.000000
2 Mean-shift 38 0.111716 4.551748 0.901795
3 Optics 56 -0.213514 6.926977 1.470868
4 Agglomerative clustering-scipy 17 0.173857 5.670576 0.762570
5 HDBSCAN 3 -0.054606 75.892894 3.302271
In [28]:
predicted_Labels=np.load('image-results2/ideology_model_vgg_19.npy_mean_shift_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  0 TOTAL IMAGES-->  2873
Cannot be visualize
CLUSTER-->  1 TOTAL IMAGES-->  2
CLUSTER-->  2 TOTAL IMAGES-->  2
CLUSTER-->  3 TOTAL IMAGES-->  2
CLUSTER-->  4 TOTAL IMAGES-->  2
CLUSTER-->  5 TOTAL IMAGES-->  2
CLUSTER-->  6 TOTAL IMAGES-->  1
CLUSTER-->  7 TOTAL IMAGES-->  1
CLUSTER-->  8 TOTAL IMAGES-->  2
CLUSTER-->  9 TOTAL IMAGES-->  1
CLUSTER-->  10 TOTAL IMAGES-->  3
CLUSTER-->  11 TOTAL IMAGES-->  3
CLUSTER-->  12 TOTAL IMAGES-->  1
CLUSTER-->  13 TOTAL IMAGES-->  1
CLUSTER-->  14 TOTAL IMAGES-->  2
CLUSTER-->  15 TOTAL IMAGES-->  1
CLUSTER-->  16 TOTAL IMAGES-->  7
CLUSTER-->  17 TOTAL IMAGES-->  1
CLUSTER-->  18 TOTAL IMAGES-->  1
CLUSTER-->  19 TOTAL IMAGES-->  1
CLUSTER-->  20 TOTAL IMAGES-->  1
CLUSTER-->  21 TOTAL IMAGES-->  3
CLUSTER-->  22 TOTAL IMAGES-->  1
CLUSTER-->  23 TOTAL IMAGES-->  1
CLUSTER-->  24 TOTAL IMAGES-->  1
CLUSTER-->  25 TOTAL IMAGES-->  3
CLUSTER-->  26 TOTAL IMAGES-->  1
CLUSTER-->  27 TOTAL IMAGES-->  1
CLUSTER-->  28 TOTAL IMAGES-->  1
CLUSTER-->  29 TOTAL IMAGES-->  4
CLUSTER-->  30 TOTAL IMAGES-->  1
CLUSTER-->  31 TOTAL IMAGES-->  1
CLUSTER-->  32 TOTAL IMAGES-->  1
CLUSTER-->  33 TOTAL IMAGES-->  3
CLUSTER-->  34 TOTAL IMAGES-->  2
CLUSTER-->  35 TOTAL IMAGES-->  6
CLUSTER-->  36 TOTAL IMAGES-->  1
CLUSTER-->  37 TOTAL IMAGES-->  1
In [29]:
predicted_Labels=np.load('image-results2/ideology_model_vgg_19.npy_optics_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  0 TOTAL IMAGES-->  7
CLUSTER-->  1 TOTAL IMAGES-->  7
CLUSTER-->  2 TOTAL IMAGES-->  7
CLUSTER-->  3 TOTAL IMAGES-->  8
CLUSTER-->  4 TOTAL IMAGES-->  6
CLUSTER-->  5 TOTAL IMAGES-->  7
CLUSTER-->  6 TOTAL IMAGES-->  6
CLUSTER-->  7 TOTAL IMAGES-->  8
CLUSTER-->  8 TOTAL IMAGES-->  10
CLUSTER-->  9 TOTAL IMAGES-->  19
CLUSTER-->  10 TOTAL IMAGES-->  5
CLUSTER-->  11 TOTAL IMAGES-->  12
CLUSTER-->  12 TOTAL IMAGES-->  8
CLUSTER-->  13 TOTAL IMAGES-->  6
CLUSTER-->  14 TOTAL IMAGES-->  5
CLUSTER-->  15 TOTAL IMAGES-->  6
CLUSTER-->  16 TOTAL IMAGES-->  8
CLUSTER-->  17 TOTAL IMAGES-->  5
CLUSTER-->  18 TOTAL IMAGES-->  8
CLUSTER-->  19 TOTAL IMAGES-->  5
CLUSTER-->  20 TOTAL IMAGES-->  7
CLUSTER-->  21 TOTAL IMAGES-->  5
CLUSTER-->  22 TOTAL IMAGES-->  6
CLUSTER-->  23 TOTAL IMAGES-->  5
CLUSTER-->  24 TOTAL IMAGES-->  5
CLUSTER-->  25 TOTAL IMAGES-->  5
CLUSTER-->  26 TOTAL IMAGES-->  5
CLUSTER-->  27 TOTAL IMAGES-->  8
CLUSTER-->  28 TOTAL IMAGES-->  6
CLUSTER-->  29 TOTAL IMAGES-->  12
CLUSTER-->  30 TOTAL IMAGES-->  7
CLUSTER-->  31 TOTAL IMAGES-->  8
CLUSTER-->  32 TOTAL IMAGES-->  5
CLUSTER-->  33 TOTAL IMAGES-->  7
CLUSTER-->  34 TOTAL IMAGES-->  5
CLUSTER-->  35 TOTAL IMAGES-->  8
CLUSTER-->  36 TOTAL IMAGES-->  6
CLUSTER-->  37 TOTAL IMAGES-->  5
CLUSTER-->  38 TOTAL IMAGES-->  7
CLUSTER-->  39 TOTAL IMAGES-->  5
CLUSTER-->  40 TOTAL IMAGES-->  6
CLUSTER-->  41 TOTAL IMAGES-->  5
CLUSTER-->  42 TOTAL IMAGES-->  6
CLUSTER-->  43 TOTAL IMAGES-->  15
CLUSTER-->  44 TOTAL IMAGES-->  7
CLUSTER-->  45 TOTAL IMAGES-->  12
CLUSTER-->  46 TOTAL IMAGES-->  5
CLUSTER-->  47 TOTAL IMAGES-->  9
CLUSTER-->  48 TOTAL IMAGES-->  5
CLUSTER-->  49 TOTAL IMAGES-->  7
CLUSTER-->  50 TOTAL IMAGES-->  5
CLUSTER-->  51 TOTAL IMAGES-->  6
CLUSTER-->  52 TOTAL IMAGES-->  5
CLUSTER-->  53 TOTAL IMAGES-->  11
CLUSTER-->  54 TOTAL IMAGES-->  6
CLUSTER-->  55 TOTAL IMAGES-->  5

RESNET50

In [30]:
results_df=pd.read_csv('image-results2/ideology_model_resnet50.npy.csv')
results_df
Out[30]:
Unnamed: 0 n_clusters silhouette calinski davies
0 Agglomerative clustering 2 0.050838 192.773120 3.319562
1 DBSCAN 0 -1.000000 -1.000000 -1.000000
2 Mean-shift 42 0.114504 3.044071 0.784067
3 Optics 53 -0.143944 8.001208 1.526539
4 Agglomerative clustering-scipy 211 0.025470 5.737732 1.150174
5 HDBSCAN 12 -0.128384 18.965519 2.631275
In [32]:
predicted_Labels=np.load('image-results2/ideology_model_resnet50.npy_mean_shift_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  0 TOTAL IMAGES-->  2886
Cannot be visualize
CLUSTER-->  1 TOTAL IMAGES-->  4
CLUSTER-->  2 TOTAL IMAGES-->  2
CLUSTER-->  3 TOTAL IMAGES-->  2
CLUSTER-->  4 TOTAL IMAGES-->  2
CLUSTER-->  5 TOTAL IMAGES-->  1
CLUSTER-->  6 TOTAL IMAGES-->  1
CLUSTER-->  7 TOTAL IMAGES-->  4
CLUSTER-->  8 TOTAL IMAGES-->  1
CLUSTER-->  9 TOTAL IMAGES-->  3
CLUSTER-->  10 TOTAL IMAGES-->  1
CLUSTER-->  11 TOTAL IMAGES-->  1
CLUSTER-->  12 TOTAL IMAGES-->  1
CLUSTER-->  13 TOTAL IMAGES-->  1
CLUSTER-->  14 TOTAL IMAGES-->  1
CLUSTER-->  15 TOTAL IMAGES-->  1
CLUSTER-->  16 TOTAL IMAGES-->  2
CLUSTER-->  17 TOTAL IMAGES-->  1
CLUSTER-->  18 TOTAL IMAGES-->  1
CLUSTER-->  19 TOTAL IMAGES-->  2
CLUSTER-->  20 TOTAL IMAGES-->  1
CLUSTER-->  21 TOTAL IMAGES-->  2
CLUSTER-->  22 TOTAL IMAGES-->  1
CLUSTER-->  23 TOTAL IMAGES-->  1
CLUSTER-->  24 TOTAL IMAGES-->  1
CLUSTER-->  25 TOTAL IMAGES-->  1
CLUSTER-->  26 TOTAL IMAGES-->  1
CLUSTER-->  27 TOTAL IMAGES-->  1
CLUSTER-->  28 TOTAL IMAGES-->  2
CLUSTER-->  29 TOTAL IMAGES-->  1
CLUSTER-->  30 TOTAL IMAGES-->  1
CLUSTER-->  31 TOTAL IMAGES-->  1
CLUSTER-->  32 TOTAL IMAGES-->  1
CLUSTER-->  33 TOTAL IMAGES-->  1
CLUSTER-->  34 TOTAL IMAGES-->  1
CLUSTER-->  35 TOTAL IMAGES-->  1
CLUSTER-->  36 TOTAL IMAGES-->  1
CLUSTER-->  37 TOTAL IMAGES-->  1
CLUSTER-->  38 TOTAL IMAGES-->  1
CLUSTER-->  39 TOTAL IMAGES-->  1
CLUSTER-->  40 TOTAL IMAGES-->  1
CLUSTER-->  41 TOTAL IMAGES-->  1
In [33]:
predicted_Labels=np.load('image-results2/ideology_model_resnet50.npy_mean_shift_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  0 TOTAL IMAGES-->  2886
Cannot be visualize
CLUSTER-->  1 TOTAL IMAGES-->  4
CLUSTER-->  2 TOTAL IMAGES-->  2
CLUSTER-->  3 TOTAL IMAGES-->  2
CLUSTER-->  4 TOTAL IMAGES-->  2
CLUSTER-->  5 TOTAL IMAGES-->  1
CLUSTER-->  6 TOTAL IMAGES-->  1
CLUSTER-->  7 TOTAL IMAGES-->  4
CLUSTER-->  8 TOTAL IMAGES-->  1
CLUSTER-->  9 TOTAL IMAGES-->  3
CLUSTER-->  10 TOTAL IMAGES-->  1
CLUSTER-->  11 TOTAL IMAGES-->  1
CLUSTER-->  12 TOTAL IMAGES-->  1
CLUSTER-->  13 TOTAL IMAGES-->  1
CLUSTER-->  14 TOTAL IMAGES-->  1
CLUSTER-->  15 TOTAL IMAGES-->  1
CLUSTER-->  16 TOTAL IMAGES-->  2
CLUSTER-->  17 TOTAL IMAGES-->  1
CLUSTER-->  18 TOTAL IMAGES-->  1
CLUSTER-->  19 TOTAL IMAGES-->  2
CLUSTER-->  20 TOTAL IMAGES-->  1
CLUSTER-->  21 TOTAL IMAGES-->  2
CLUSTER-->  22 TOTAL IMAGES-->  1
CLUSTER-->  23 TOTAL IMAGES-->  1
CLUSTER-->  24 TOTAL IMAGES-->  1
CLUSTER-->  25 TOTAL IMAGES-->  1
CLUSTER-->  26 TOTAL IMAGES-->  1
CLUSTER-->  27 TOTAL IMAGES-->  1
CLUSTER-->  28 TOTAL IMAGES-->  2
CLUSTER-->  29 TOTAL IMAGES-->  1
CLUSTER-->  30 TOTAL IMAGES-->  1
CLUSTER-->  31 TOTAL IMAGES-->  1
CLUSTER-->  32 TOTAL IMAGES-->  1
CLUSTER-->  33 TOTAL IMAGES-->  1
CLUSTER-->  34 TOTAL IMAGES-->  1
CLUSTER-->  35 TOTAL IMAGES-->  1
CLUSTER-->  36 TOTAL IMAGES-->  1
CLUSTER-->  37 TOTAL IMAGES-->  1
CLUSTER-->  38 TOTAL IMAGES-->  1
CLUSTER-->  39 TOTAL IMAGES-->  1
CLUSTER-->  40 TOTAL IMAGES-->  1
CLUSTER-->  41 TOTAL IMAGES-->  1

Inceptionv3

In [31]:
results_df=pd.read_csv('image-results2/ideology_model_inceptionv3.npy.csv')
results_df
Out[31]:
Unnamed: 0 n_clusters silhouette calinski davies
0 Agglomerative clustering 2 0.383595 1902.910288 1.186455
1 DBSCAN 0 -1.000000 -1.000000 -1.000000
2 Mean-shift 49 0.263252 76.792516 2.044841
3 Optics 28 -0.393399 11.928438 1.333732
4 Agglomerative clustering-scipy 2 0.522594 749.840801 0.830656
5 HDBSCAN 3 0.356685 649.991763 1.457040
In [ ]:
predicted_Labels=np.load('image-results2/ideology_model_inceptionv3.npy_mean_shift_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)
CLUSTER-->  0 TOTAL IMAGES-->  2199
Cannot be visualize
CLUSTER-->  1 TOTAL IMAGES-->  78
CLUSTER-->  2 TOTAL IMAGES-->  8
CLUSTER-->  3 TOTAL IMAGES-->  18
CLUSTER-->  4 TOTAL IMAGES-->  14
CLUSTER-->  5 TOTAL IMAGES-->  3
CLUSTER-->  6 TOTAL IMAGES-->  2
CLUSTER-->  7 TOTAL IMAGES-->  2
CLUSTER-->  8 TOTAL IMAGES-->  2
CLUSTER-->  9 TOTAL IMAGES-->  18
CLUSTER-->  10 TOTAL IMAGES-->  1
CLUSTER-->  11 TOTAL IMAGES-->  1
CLUSTER-->  12 TOTAL IMAGES-->  10
CLUSTER-->  13 TOTAL IMAGES-->  1
CLUSTER-->  14 TOTAL IMAGES-->  2
CLUSTER-->  15 TOTAL IMAGES-->  3
CLUSTER-->  16 TOTAL IMAGES-->  5
CLUSTER-->  17 TOTAL IMAGES-->  14
CLUSTER-->  18 TOTAL IMAGES-->  8
CLUSTER-->  19 TOTAL IMAGES-->  21
CLUSTER-->  20 TOTAL IMAGES-->  1
CLUSTER-->  21 TOTAL IMAGES-->  17
CLUSTER-->  22 TOTAL IMAGES-->  9
CLUSTER-->  23 TOTAL IMAGES-->  1
CLUSTER-->  24 TOTAL IMAGES-->  28
CLUSTER-->  25 TOTAL IMAGES-->  5
CLUSTER-->  26 TOTAL IMAGES-->  94
CLUSTER-->  27 TOTAL IMAGES-->  5
CLUSTER-->  28 TOTAL IMAGES-->  9
CLUSTER-->  29 TOTAL IMAGES-->  1
CLUSTER-->  30 TOTAL IMAGES-->  4
CLUSTER-->  31 TOTAL IMAGES-->  43
CLUSTER-->  32 TOTAL IMAGES-->  9
CLUSTER-->  33 TOTAL IMAGES-->  10
CLUSTER-->  34 TOTAL IMAGES-->  1
CLUSTER-->  35 TOTAL IMAGES-->  11
CLUSTER-->  36 TOTAL IMAGES-->  74
CLUSTER-->  37 TOTAL IMAGES-->  45
CLUSTER-->  38 TOTAL IMAGES-->  1
CLUSTER-->  39 TOTAL IMAGES-->  35
In [ ]:
predicted_Labels=np.load('image-results2/ideology_model_inceptionv3.npy_mean_shift_labels.npy')
unique_labels=set(predicted_Labels)
for label in unique_labels:
    if(label!=-1):
        showClustering(predicted_Labels,label)