My mentor and I decided the tasks for this week given as :

  • 1. Extracting all the possible audio features
  • 2. Extracting all the possible image features (including pretrained models)
  • 3. Hyperparameter tunning the models to get better results

Starting with the image clustering
Last week we saw that bio metric clustering results were really nice as compared to the general image clustering , so this week we decided to go with some more feature extraction and hyper tunning all the clustering models in depth. We use a) transfer learning to extract the features and b)converted images to gray scale to extract the raw features from the image, i gray scale the images to see how the images will be clustered without any color component. Transfer learning: This week I tried these pretrained models.
1. VGG16
2. VGG19
3. Resnet50
4. Xception
5.Inception-Resnetv2
6.mobilenet
7.densenet121
8.densenet169
9.densetnet201
I partioned the algorithms into two categories 1)Hierarchical based 2) Density based
For every algorithm i ran with
a)t-SNE+PCA reduced
b)PCA reduced features
c)t-sne reduced features
d)U-map reduced features

S No. Code Type Code link
1 Image feature Extraction with pretrained models Image feature extraction code
2 Image feature extraction without pretrained models Image feature extrcation
3 Density based Image clustering (with grid search) clustering-code
4 Hierarchical based Image clustering (with grid search) clustering-code

This week we will see a lot of image clustering results . I will advised to go through all the files, it will be interesting to see the results. Starting with the Hierarchical clustering results

Pre-trained model PCA+tsne reduced pca reduced t-SNE reduced U-map reduced
VGG16 Hierarchical-image-results-pca-vgg16.slides.html(One drive Link) Hierarchical-Image-Clustering-vgg16-tsne.pdf(One drive link) Hierarchical-Image-clustering-umap.html
VGG19 Hierarchical-Image-Cluster-results-tsne-pca-vgg19.pdf(One-drive link) Hierarchical-Image-Cluster-results-pca-vgg19.pdf(One-drive link) Hierarchical-Image-Cluster-results-tsne-vgg19.slides.html Hierarchical-Image-clustering-umap.html
Resnet-50 Hierarchical-Image-Cluster-results-pca-resnet50.html Hierarchical-Image-Cluster-results-tsne-resnet50.slides.html Hierarchical-Image-clustering-umap.html
InceptionNet Hierarchical-Image-Cluster-results-pca-inceptionv3.html Hierarchical-Image-Cluster-results-tsne-inceptionv3.slides.html Hierarchical-Image-clustering-umap.html
Mobilenet Hierarchical-Image-Cluster-results-pca-mobilenet.pdf(one drive link) Hierarchical-Image-clustering-umap.html
InceptionNet-ResnetV2 Hierarchical-Image-Cluster-results-pca-inception-resnet.pdf (One drive link) Hierarchical-Image-clustering-umap.html
Densenet121 Hierarchical-Image-Cluster-results-pca-densenet121.pdf(One drive link) Hierarchical-Image-clustering-umap.html
Densenet169 Hierarchical-Image-clustering-umap.html
Densenet201 Hierarchical-Image-clustering-umap.html
XceptionNet Hierarchical-Image-Cluster-results-pca-xceptionet.pdf(One drive link) Hierarchical-Image-clustering-umap.html
Gray scale image Hierarchical-Image-clustering-umap.html


Density based results

Pre-trained model Umap reduced pca reduced t-SNE reduced PCA + t-SNE reduced
VGG16 Density-image-results-umap-vgg16.pdf(One drive link) Density-image-results-pca-vgg16.pdf(One drive link) Density-image-results-tsne-vgg16.pdf(One drive link) Density-image-results-pca-tsne-vgg16.pdf(One drive link)
VGG19 Density-image-results-pca-vgg19.pdf(One drive link)
Resnet-50 Density-image-results-tsne-resnet50.pdf(One drive link)
InceptionNet
Mobilenet Density-image-results-umap-mobilenet.pdf(One drive link)
InceptionNet-ResnetV2
Densenet121 Density-image-results-umap-densenet121.pdf(One drive link) Density-image-results-pca-tsne-densenet121 (One drive link)
Densenet169
Densenet201 Density-image-results-tsne-densenet201.pdf(One drive link)
Xception Density-image-results-tsne-xception (One drive link) Density-image-results-pca-tsne-xception (One drive link)
Gray Scale




Getting started with the Audio clustering
In the Audio clustering I extracted all the possible audio fetaures (listed in the table below)and then I ran all the clustering models in four cases:
a)Actual features
b)PCA dimensionality reduction
c)t-Sne dimensionality reduction
d)Umap dimensionality reduction
The feature extraction code can be found here https://github.com/Himani2000/GSOC_2020/blob/master/Feature_extraction/Audio/FeatureExtraction_pipeline.ipynb

Feature Extracted "ai/ee" 200ms "u/a" "ai/ee" 5 word
mfcc Audio-results-Ideology200ms-mfcc.html Audio-results-muslim-mfcc.html audio-results-ideology5word-mfcc.html
chromas audio-results-ideology200ms-chroma.html Audio-results-muslim-chroma.html audio-results-ideology5word-chromas.html
log-melSpectrogram audio-results-ideology200ms-log-mel-spec.html audio-results-muslim-log-mel-spec.html audio-results-ideologyfive-logMelSpec.html
Formant-20 audio-results-ideology200ms-formant20.html Audio-results-muslim-formants20.html audio-results-ideologyfive-formants20.html
Formant-50 Audio-results-Ideology200ms-formant50.html Audio-results-muslim-formants50.html audio-results-ideologyfive-formants50.html
Formant-80 Audio-results-Ideology200ms-formant80.html Audio-results-muslim-formants80.html audio-results-ideologyfive-formants80.html
Formant-LPC Audio-results-Ideology200ms-formantlpc.html Audio-results-muslim-formantslpc.html audio-results-ideologyfive-formantslpc.html
Zero crossing Rate Audio-results-Ideology200ms-zeroCrossing.html Audio-results-muslim-zerocrossings.html audio-results-ideology5word-zeroCrossing.html